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Finite Element Preliminaries

hp-Adaptive finite elements

@ The finite element method
approximates the solution,
u, of a partial differential
equation by a continuous
piecewise polynomial
function, upp

® upp is a polynomial over
each element (triangle) of
a grid

@ the polynomial degree may
be different over different
elements
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Finite Element Preliminaries

Adaptive Grid Refinement

@ h-adaptive finite elements
improve the accuracy by
selectively subdividing
elements to reduce the
element size h
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Finite Element Preliminaries

Adaptive Grid Refinement

@ h-adaptive finite elements
improve the accuracy by
selectively subdividing
elements to reduce the
element size h

@ p-adaptive finite elements
improve the accuracy by
increasing the polynomial
degree, p, on selected
elements
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Finite Element Preliminaries

Adaptive Grid Refinement

@ h-adaptive finite elements
improve the accuracy by
selectively subdividing
elements to reduce the
element size h

@ p-adaptive finite elements
improve the accuracy by
increasing the polynomial
degree, p, on selected
elements

@ hp-adaptive finite
elements do both
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Finite Element Preliminaries

a priori error bounds

o (Babuska & Suri, 1987) If h and p are uniform and u is in the
Sobolov space H™

i
lu = uppl|m < Cw”“HH"’

where o = min(p, m — 1)
@ this suggests that, if the solution is sufficiently smooth, p
refinement is better, and if not, h refinement is better

o (Guo & Babuska, 1986) Convergence is exponential in the
number of degrees of freedom, N

llu — upp|| < Ce=2V°

e in2D, bis1/3
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Finite Element Preliminaries

Exponenetial con
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Finite Element Preliminaries
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Finite Element Preliminaries

hp-Adaptive Methods

@ Adaptive finite element methods use a posteriori local error
indicators to determine where the grid should be refined
@ But how do you determine how it should be refined?
e by h?
e by p?
@ some combination?
e Many hp-adaptive strategies have been proposed over the
years to answer this question
@ We have implemented these strategies in the finite element
code PHAML and performed an extensive experiment to
examine the performance of different strategies under different
situations
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Finite Element Preliminaries

a posteriori error indicators and estimates

@ computable error indicators (or estimates) are used to
determine which elements should be refined

@ local Neumann error indicator: for an element, T;, of degree
p, use the p-hierarchical basis functions of exact degree p + 1
to solve

Lei=r:=f—Lup inT;
8e,- . [8uhp

o 8n] on 0T;

where Lu = f is the PDE, and [- - -] is the jump in the normal
derivative across element boundaries
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Finite Element Preliminaries

a posteriori error indicators and estimates

@ 7; = ||ej|| estimates the error over T;

°on= \/2717,2 estimates the global error

@ note that 7; also estimates the amount of change in the
solution if T; was to be p-refined
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Finite Element Preliminaries

hp-Adaptive algorithm

given an error tolerance, T
begin with a very coarse grid in h with small p
discretize and solve on the coarse grid
loop
compute n; and n
if n < 7 exit
mark elements with 1; > 7/v/Ngjem for refinement
determine if marked elements should be refined by h or p
refine marked elements
discretize and solve on the current grid
end loop

@ some strategies dictate a different algorithm

@ to observe convergence, use T = .1,.05,.025,.01,...,1078
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hp-Adaptive Strategies

13 hp-Adaptive Strategies

methods for determining how an element should be refined
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hp-Adaptive Strategies

hp-Adaptive Strategies

e 1. Use of a priori knowledge (APRIORI)
@ Ainsworth & Senior, 1999
o if there is a priori knowledge about the solution, use it
e use h refinement at singularities and other trouble spots
e use p refinement where the solution is smooth
@ 2. Ratio of prior two p error estimates (PRIOR2P)
@ Siili, Houston & Schwab, 2000
o for an element of degree p, compute error estimates 7,1 and
Np—2 of the approximate solutions of lower degree
e using the ratio of these n's and the a priori error bound

_ log(np—1/1p—2)
log((p—1)/(p—2))
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hp-Adaptive Strategies

hp-Adaptive Strategies

e 3. Type parameter (TYPEPARAM)

@ Gui & Babuska, 1986
e directly use a ratio of error estimates, R = %
o
o define a "type parameter’, 0 < v < o0, e.g. 7= 0.3

e use h refinement if R >« and p refinement if R <~
@ 4. Convergence of next three p error estimates (NEXT3P)

@ Ainsworth & Senior, 1997

e for an element of degree p, compute three error estimates
based on spaces of degree p+ 1, p+2, and p+ 3

o fit the three data points to the a priori error estimate to
determine the three unknown constants in it, one of which is
the smoothness m
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hp-Adaptive Strategies

hp-Adaptive Strategies

@ 5. Texas 3 Step (T3S)

@ Oden & Patra, 1995

e 1. perform uniform h refinement to get starting grid

e 2. perform adaptive h refinement to reduce error part way

o determine number of refinements by
_ 2N 1/ min(p+1,m)
ne = (2 Ni/ () ™
e 3. perform adaptive p refinement to reduce error to given

tolerance
@ determine number of refinements by
P = plp/Ny /7)Y
e for high accuracy, use intermediate tolerances and repeat steps
2 and 3 until final tolerance is reached
@ 6. Alternate h and p (ALTERNATE)
e variant of Texas 3 Step
e instead of computing how many times to refine an element,
use our usual hp-adaptive algorithm
e alternately refine by h and p to reduce the error to specific
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hp-Adaptive Strategies

hp-Adaptive Strategies

@ 7. Nonlinear programming (NLP)
@ Patra & Gupta, 2001
e formulate mesh design as an optimization problem
@ minimize total degrees of freedom subject to error less than
tolerance, and other constraints (e.g. pi > 1)
e this leads to a mixed integer nonlinear program, which is
NP-hard
@ allow real p and h, and round to the discrete values afterward
e the solution gives new h and p for each element
@ 8. Assume smooth and predict (SMOOTH_PRED)
@ Melenk & Wohlmuth, 2001
e assume the solution is smooth, and predict what the error
estimate should be under optimal convergence
o perform h refinement if the actual error estimate is larger than
the predicted error estimate, since that indicates the
assumption of smoothness was violated, and p refinement
otherwise
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hp-Adaptive Strategies

hp-Adaptive Strategies

@ 9. Bigger of h and p error estimates (H&P_ERREST)

@ Schmidt & Siebert, 2000

e one local a posteriori error indicator estimates how much the
solution will change under p refinement by solving a local
residual Neumann problem with the element p refined

e another error indicator estimates how much the solution will
change under h refinement by solving a local residual Dirichlet
problem with the element h refined

e compute both error indicators and select the type of
refinement that will change the solution the most
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hp-Adaptive Strategies

hp-Adaptive Strategies

e 10. Decay rate of coefficients (COEF_DECAY)
@ Mavriplis, 1994
e consider the coefficients of the expansion of the solution in the

p-hierarchical basis
e estimate the decay rate of the coefficients by a least squares fit

of the last four to ce™ 7'
o refineby pifo>1,and by hifo <1

@ 11. Root test on coefficients (COEF_ROOT)

@ Houston, Senior & Siili, 2003
e consider those same coefficients, a;
e estimate the regularity using a “root test”

_log((20+ 1)) 1
- 2log(p) 2
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hp-Adaptive Strategies

hp-Adaptive Strategies

@ 12. Reference solution, selection based on edges
(REFSOLN_EDGE)

@ Demkowicz et al., 1989-2007
e perform uniform h refinement and uniform p refinement and
solve on the resulting mesh to get a reference solution up/3 511
e stage a competition between edge p refinement and h
refinements in which the children are assigned polynomial
degrees that result in the same increase in degrees of freedom
e for each possible refinement, determine the error decrease rate
(lun/2,001 = Whpl* = uny2,p41 = Wig™ )/ (Niew — Nip)
® Wy, is the projection based interpolant of uy/3 ,11 on the
original mesh, and wy,™ is the interpolant on a competitor
e basically choose the refinement with the largest error decrease
rate, but there are several other subtleties
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hp-Adaptive Strategies

hp-Adaptive Strategies

@ 13. Reference solution, selection based on elements
(REFSOLN_ELEM)
e Solin et al., 2008
compute a reference solution up/3 541
candidate refinements for an element with degree p; are
o p refine to degree p; + 1 and p; + 2
@ h refine with all combinations of pg, po + 1, and po 4+ 2 where
po = (pi +1)/2
o for each candidate, compute the H! norm projection error
Ccandidate = ||Uh/2,p+1 - Whp||
@ Wpp is the H? projection of up/s ,11 onto the candidate
refinement

e choose the candidate that maximzes
(lOg Ci - |Og Ccandidate)/(,vcandidate - NI)
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Test Problems

21 Test Problems

W.F. Mitchell, A Collection of 2D Elliptic Problems for Testing Adaptive Algorithms,
NISTIR 7668, NIST, Gaithersburg, MD, 2010.
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Test Problems

Test Problems

o Different equations
e mostly Poisson, ux + u,, = f(x,y)
e one Helmholtz
e one with first order terms
e two with piecewise constant coefficients
e one coupled system of two equations with mixed derivative
term
@ Boundary conditions
e mostly Dirichlet
e one with Neumann and mixed
@ Domain
e mostly unit square or (-1,1) square
e some with reentrant corner or slit
@ Exhibit a variety of difficulties
o Classified as easy, hard or singular
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Test Problems

Test problems

B 4 F e

Analytic (polynomial) L-domain reentrant corner
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Test Problems

Test problems
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Test Problems

Test problems
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Linear elasticity, mode 1, u Linear elasticity, mode 1, v
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Linear elasticity, mode 2, u Linear elasticity, mode 2, v
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Test Problems

Test problems

Mild peak Sharp peak

Battery
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Test Problems

Test problems
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Mild boundary layer Strong boundary layer
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Mild oscillatory Strong oscillatory
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Test Problems

Test problems

N rEr

Mild wave front Strong wave front

787

Asymmetric wave front Singular well
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Test Problems

Test problems

B % el

Intersecting interfaces Multiple difficulties
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Summary of Results

Computational results

@ Solve each problem with each strategy using a sequence of 7's
e in most cases 7 = .1, .05, .025, .01, .005,...,1078
e when the tolerance is met, record the number of degrees of
freedom and energy norm of the error
@ To get the convergence curve, compute the least squares fit of
the form Ae BN to the data
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Summary of Results

Sample convergence curves

PRIOR2P
L-Shaped Domain
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Most of the convergence data
exhibit a very nice exponential
convergence curve, although the
exponent on N is not always this
close to 1/3
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Summary of Results

Sample convergence curves

PRIOR2P ALTERNATE
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Most of the convergence data But some of them are a little sloppy

exhibit a very nice exponential
convergence curve, although the
exponent on N is not always this
close to 1/3
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Summary of Results

Ranking the strategies
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Summary of Results

Ranking the strategies

L-Shaped Domain
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Summary of Results

Ranking the strategies

L-Shaped Domain
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Summary of Results

Ranking the strategies

L-Shaped Domain
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Summary of Results

Ranking the strategies

strategy factor

APRIORI 1.00

REFSOLN_EDGE 1.00

REFSOLN_ELEM 1.54

PRIOR2P 1.61

SMOOTH_PRED 1.77

. . COEF_ROOT 2.03

5. Rank the strategies by this COEF DECAY 508
factor TYPEPARAM 2.09
H&P_ERREST 2.48

NLP 3.03

NEXT3P 3.67

ALTERNATE 6.90

T3S 11.55

L-shaped domain, high accuracy
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Summary of Results

Summary of results

@ Group results by category and accuracy

easy problems, low accuracy
easy problems, high accuracy
hard problems, low accuracy
hard problems, high accuracy
singular problems, low accuracy
singular problems, high accuracy
all problems, low accuracy

all problems, high accuracy

@ For each group, rank the strategies by the average of the
N/ Nyest factors in that group

@ When computing the averages, replace any factor that is
greater than 10 with 10, so that a strategy is not disqualified
by a single very bad case.
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Summary of Results

Easy problems, low accuracy

Factor by which N is larger than the best

Easy problems, low accuracy

1 1
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Summary of Results

Easy problems, high accuracy

Factor by which N is larger than the best

Easy problems, high accuracy

2 1 1 1 1 1

10— -
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Summary of Results

Hard problems, low accuracy

Factor by which N is larger than the best

Hard problems, low accuracy
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Summary of Results

Hard problems, high accuracy

Factor by which N is larger than the best

Hard problems, high accuracy
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Summary of Results

Singular problems, low accuracy

Factor by which N is larger than the best

Singular problems, low accuracy
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Summary of Results

Singular problems, high accuracy

Factor by which N is larger than the best

Singular problems, high accuracy
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All problems, low accuracy

Summary of Results

Factor by which N is larger than the best

All problems, low accuracy
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Summary of Results

All problems, high accuracy

Factor by which N is larger than the best
All problems, high accuracy
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Summary of Results

. . strategy refinement total

o Wall clock times for the mild ALTERNATE 15.8 45.4
wave problem APRIORI 18.1 68.6
_ 10-8 COEF_DECAY 6.7 23.5

°T= o COEF_ROOT 11.0 37.2

e time spent in grid H&P_ERREST 428 1136
refinement NEXT3P 119.2 163.2

. . NLP 2317.8  2923.2

o total time to. so.lutlon PRIOR2P 2002 Tna

@ NOT a careful timing REFSOLN_EDGE 587.9 1188.1
comparison REFSOLN_ELEM 136.4 1432

) . SMOOTH_PRED 1.1 33.1

o Just to give a rough idea T35 15.1 473

e Take it with a grain of salt TYPEPARAM 20.8 55.0
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Conclusions

Conclusions

o REFSOLN_EDGE and REFSOLN_ELEM are the top two
strategies in all but one category
o Not always the top two for every individual problem
e Perform very well on every problem except REFSOLN_EDGE
on battery
o Considerably more expensive than all other methods except
NLP and NEXT3P
e SMOOTH_PRED and TYPEPARAM perform very well in all
categories
in the top 5 in most categories
SMOOTH_PRED is especially good at high accuracy
TYPEPARAM is especially good on non-singular problems
1 problem where SMOOTH_PRED did not perform well (sharp
peak)
o 5 cases where TYPEPARAM did not perform well
e very inexpensive, requiring just a couple simple computations
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Conclusions

Conclusions

e APRIORI is very good for:

e problems with point singularities at known locations
e most problems at low accuracy
e not so good for high accuracy solution of non-singular
problems with strong features
o NEXT3P is exceptional at low accuracy, but bad at high
accuracy and rather expensive

@ T3S does OK with non-singular problems, but poorly with
singular problems

o COEF_DECAY, COEF_ROOT and PRIOR2P do pretty good
at low accuracy and for singular problems, but not as good for
high accuracy solution of non-singular problems

@ NLP is extremely expensive and does not perform very well

Applied and Computational Mathematics Division, NIST Comparison of hp-Adaptive Finite Element Strategies



Conclusions

Future work

o Additional strategies
o Strategies that have come to my attention recently
o Eibner & Melenk (2007)
o Strategies that have come into existence recently
e Bank & Hguyen (2011)
o Buerg & Doerfler (2011)
e Wihler (2011)
@ Use lessons learned from this study to develop a better
general purpose strategy

e Combine parts of different strategies that work well
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Publications

o W.F. Mitchell and M.A. McClain, A Survery of hp-Adaptive
Strategies for Elliptic Partial Differential Equations, in Recent
Advances in Computational and Applied Mathematics
(T.E. Simos, ed.), Springer, 2011, pp. 227-258.

e W.F. Mitchell, A Collection of 2D Elliptic Problems for
Testing Adaptive Algorithms, NISTIR 7668, 2010.

e W.F. Mitchell and M.A. McClain, A Comparison of
hp-Adaptive Strategies for Elliptic Partial Differential
Equations Using Bisected Triangles, NISTIR 7824, 2011.
Submitted to ACM TOMS.

@ available at http://math.nist.gov/ "WMitchell
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